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SUMMARY 

A sharp interface problem arising in the flow of two immiscible fluids, slag and molten metal in a blast 
furnace, is formulated using a two-dimensional model and solved numerically. This problem is a transient 
two-phase free or moving boundary problem, the slag surface and the slag-metal interface being the free 
boundaries. At each time step the hydraulic potential of each fluid satisfies the Laplace equation which is 
solved by the finite element method. The ordinary differential equations determining the motion of the free 
boundaries are treated using an implicit time-stepping scheme. The systems of linear equations obtained by 
discretization of the Laplace equations and the equations of motion of the free boundaries are incorporated 
into a large system of linear equations. At each time step the hydraulic potential in the interior domain and 
its derivatives on the free boundaries are obtained simultaneously by solving this linear system of equations. 
In addition, this solution directly gives the shape of the free boundaries a t  the next time step. The implicit 
scheme mentioned above enables us to get the solution without handling normal derivatives, which results in 
a good numerical solution of the present problem. A numerical example that simulates the flow in a blast 
furnace is given. 
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A FREE SURFACE DRAINAGE PROBLEM 

In this paper we consider a gravity drainage problem of slag and molten metal in a blast furnace 
and present a numerical method to solve it using the finite element method. Since slag and molten 
metal are immiscible with each other, the boundary between the slag and the metal forms a sharp 
interface, so that this flow problem can be formulated as a free or moving boundary problem, the 
slag surface and the slag-metal interface being the free boundaries. 

The physical situation of the present problem is as follows. The hearth is packed with coke and 
the molten metal settles in the bottom of the hearth and the slag settles on it. It is assumed that 
initially the slag-metal interface is above the upper edge of the outlet. When the drainage is 
started from the outlet, the molten metal and the slag flow through the bed of coke towards the 
outlet. The molten metal drains out first, then both the molten metal and the slag drain out. The 
drainage process is termimted when the slag surface reaches the upper edge of the outlet because, 
if it is continued, gas at high temperature escapes from the outlet, which is very dangerous. 
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In the present flow problem the coke plays the role of porous medium. There have been a 
variety of works on the numerical solution of sharp interface problems in porous media. Among 
other things, the governing equations and the interfacial boundary conditions of problems 
involving non-steady flow of groundwater and of interface problems between salt water and fresh 
water in a coastal aquifer are quite similar to those of the present problem. A typical approach to 
the flow problem through a dam was given by Neuman and Witherspoon' who used the finite 
element method. Also numerical solutions of the interface problem in a coastal aquifer were 
presented by Liu et ~ 1 . ~  who used the boundary integral equation method. For other works see 
these papers and references therein. The boundary integral equation method or the boundary 
element method is known to be a powerful tool when solving such free boundary  problem^.^ Also 
Crank4 presented a good review of solutions of various free and moving boundary problems. 

Natori and Kawarada solved a sharp interface problem of slag and molten metal numerically 
by the method of integrated penalty' and also by the boundary element method.6 In a previous 
paper7 we solved a one-phase problem in which only the slag exists by the finite element method. 
The purpose of the present paper is to solve the two-phase problem in which slag and molten 
metal exist by the finite element method and to compare the result with those obtained by the 
methods mentioned above. 

As in the papers by Natori and Kawarada, we formulate the present problem in the form of a 
two-dimensional free boundary problem. For simplicity the side wall of the hearth is assumed to 
be perpendicular to the bottom, whose width is a as shown in Figure 1. 

Let 
Y =f (x, t )  (1) 

Y = g(x3 4 (2) 

be the shape of the slag surface at time t and let 

be the shape of the slag-metal interface. These are the free boundaries to be determined. Dl(t) and 

Y 

t 

I L 

slag-metal interface y=g(x,t) outlet 
____________________--------.-------------------- I 

molten metal D2(t) 

0 

Figure 1. The domains D l ( t )  and D,(t)  and the free boundaries 
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D2(t )  denote the domains of the slag and the molten metal respectively: 

Dl(t) = {(X,Y)IO < x'< 4 g(x7 0 < Y < f ( x ,  t l f ,  
D2(t) = { ( X , Y ) l O  < x < 4 0 < Y < 9(X,Y)} .  

(3) 

(4) 
The hydraulic potentials u1 of the slag and u2 of the molten metal are given by 

+Y 
P1 -Po 

2.41 =- 
Y 1  

and 

P 2 - P o  
u 2 = 7 + y ,  

(5) 

Y2 

where y is the vertical height of each surface from the bottom, p1 and p 2  are the pressures, po  is the 
pressure at the reference point and y1 and y, are the specific weights in each domain. Since the slag 
and the molten metal flow through the bed of coke, i.e. through the porous medium, we can apply 
Darcy's law3, and hence the velocities v1 and v, of the slag and the molten metal are given by 

v1 = - K ,  grad u l ,  (7) 

v 2 =  - K 2  grad u,, (8) 
where K ,  and K ,  are the hydraulic conductivities of the slag and the molten metal respectively, 
which are assumed to be constant. Substituting these equations into the equations of continuity 

div v1 =0, (9) 

div v2 =0, (10) 
we have a pair of Laplace equations 

Aul =0, 

Au2 = O  

for the hydraulic potentials in each domain. 

constant p ,  on the slag surface, we have 
Next we consider the boundary conditions for u1 and u2.  Since the pressure is assumed to be 

u1 = f ( x ,  t )  on y = f ( x ,  t). (13) 
On the slag-metal interface the pressure of the slag is equal to that of the-molten metal, i.e. 

P1 = p 2  on Y=S(x , t ) .  

We substitute this into ( 5 )  and (6) to give 

g(x , t )  on y = g ( x , t ) .  
Y1 

(14) 

Also, since the normal components of the fluid flux are equal to each other on the slag-metal 
interface, we have 

where n, and n2 are outward normals to the boundary of each domain. On the three impermeable 
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walls y = 0, x = 0 and x = a the normal component of the fluid flux is zero except on the outlet: 

= 0, (16) au, 
an1 

On the outlet we assume that the drainage rate is constant uo: 

au, 1 
an,  Kl 

8%- 1 
an2 K~ uo.  

- 
U O  9 

-_ -- 

___ -_ 

Finally the motion of the slag surfacef(x, t )  is determined by the standard kinematic boundary 
condition 

Similarly the motion of the slag-metal interface g(x, t )  is given by 

APPLICATION OF THE FINITE ELEMENT METHOD 

Since our problem is a time-dependent free boundary problem, we first discretize the time t: 

t k = k b t ,  k=O, 1, 2 , .  . . . (22) 
At every time step tk we solve the Laplace equations (11) and (12) by means of the finite element 
method, and the free boundaries are updated at each time step by (20) and (21), each of which is 
approximated by an implicit scheme as will be described in the next section. As will be shown 
later, the solutions of the Laplace equations and the new position of the free boundaries are 
obtained simultaneously in our method. 

In order to apply the finite element method, we divide the domain D l ( t )  and D2( t )  into 
triangular elements as follows. First we subdivide the interval (0,a) on the x-axis into rn 
subintervals with nodal points 

xo( = O), XI, x2, . . . 9 x,( = 4 (23) 
in such a way that the subinterval becomes smaller as it is closer to x = a. Next suppose that at 
t = tk the shape of the slag-metal interface y = g(x, tk) and that of the slag surface y =f(x, t k )  are 
obtained. Then in D2(t )  we subdivide the vertical line segment bounded by (x,,O) and (xi,g(xi,tk)) 
into n2 intervals, so that the width hj2) of the subinterval is given by 

1 
h!” =- g(xi, tk). 

n2 
Therefore the nodal points in the domain &(tk) are 

(x i ,  jh:”), j = O ,  I, 2, . . . , n 2 .  
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Similarly in Dl(t) we subdivide the vertical line segment bounded by (x i ,  f ( x i , t k ) )  and (xi,g(x,,tk)) 
into n ,  equal subintervals with the width 

1 
n1 

(26) =- (f(xi, t k )  tk) )? 

and hence the nodal points in the domain Dl(tk)  are given by 

(x i ,g (x i , tk )+jh{ ' ) ) ,  j = O ,  1, 2 , .  . . , n,. (27) 
We number the nodal points from left to right and then from bottom to top as shown in Figure 2. 

Table I shows to what quantity each of the nodal points is assigned. As seen in this table, each 
of the physical nodal points on the slag-metal interface is triply assigned, to u2, to au2/an2 and 
to ul. Also each of the physical nodal points on the slag surface is doubly assigned, to u1 and to 
aul/an,. 

tnl t3) (mtl ) t1- 
tn,t2) (mt1)tl 1 

I ( n2t2 ) (mtl ) t1 
(n2tl ) (m+l ) t L  

f n2 (m+l)+1 

2 (mt 1 )+I-* 
(mtl ) t1 $?' 

1 2 3 4  

Figure 2. Triangulation of the domains for the finite element method and numbering of the nodal points 

Table I. Assignment of the nodal points 

Nodal points Assigned to 

1 -n2(m+ 1) 
n2(m+ 1 ) +  1 -(n2 + 1 )  (m+ 1) 

(nz + 1 )  (m+ 1 ) +  1 - ( n 2  +2) (m+ 1) 
(n,+2) (m+ 1 ) +  1 - ( n 2  +3) (m+ 1 )  

(n2 + 3) (m + 1)+ 1 - (n2  + n, + 2) (m + 1)  
(n2+nl+2)  ( m + l ) +  1-(n2+n,+3) (m+ 1 )  
(n2 +n, + 3) (m+ 1)+ 1 - (n2  + n, +4) (m+ 1) 

uz in D2(t )  
u2 on the slag-metal interface 

du2/an2 on the slag-metal interface 
u ,  on the slag-metal interface 

u1 in D l ( t )  
u I  on the slag surface 

aul/an, on the slag surface 
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Let 4 j ( x , y )  be the piecewise linear function which takes the value one at the jth node and 
vanishes at other nodes. $ j ( x , y )  is assumed to be identically zero outside the domain. We expand 
the approximate solution Ez, to u1 in the domain D l ( t k )  in terms of (4 j j :  

( n z + n l +  3 )  (m+ 1 )  

Glb, Y )  = 1 u j 4 j ( x > ~ ) .  
j=(nz+2) ( m + l ) + l  

Similarly we expand the approximate solution ii, to u, in the domain DZ(tk) :  
( n z + l )  ( m + 1 )  

U",(X, Y )  = 1 uj$Ax, Y ) .  
j =  1 

The coefficient u j  is numbered consistently with the numbering of the nodal points. Note that the 
time t k  is not explicitly written in 4 j ( x ,  y), i i l (x ,  y )  and G,(x, y )  because we fix the time t k  when we 
solve the Laplace equations by the finite element method. 

We temporarily separate the present problem into two problems; one is in the domain D l ( t k )  
and the other is in the domain DZ(tk). Also we temporarily assume that the normal derivative on 
the slag surface is specified as a given boundary value q( ' ) (x , t , )  and those on the slag-metal 
interface as q ( ' ) ( x ,  t k )  in D l ( t k )  and q(')(x, t k )  in D2(tk) ,  although they are actually unknowns. Then 
the problems become as follows. For the slag domain: 

Au,=O in D l ( t k ) ,  (30) 

= O  on x=O and x=u (except on the outlet), au, 
an  1 

au, 1 _ _  - _ _  uo on the outlet, 
an1 Kl 

-=q( ' ) (x ,  t k )  on the slag surface, au  1 

an1 
(33) 

=q("(x, t k )  on the slag-metal interface. (34) au, 
8% 

For the molten metal domain: 

Au,=O in DZ(tk.3 (35) 

= 0 on y = 0, x = 0, x = a (except on the outlet), (36) 
au, 
8% 

au, 1 
an, K ,  
__- - _ _  uo on the outlet, 

* = 9'2) (x, t k )  on the slag-metal interface. 
8% 

(37) 

Now we apply the finite element method using (28) and (29) to obtain two systems of linear 
equations for the slag domain and for the molten metal domain. Here we assumed that in the 
neighbourhood of the ((n, + 1) (m+ 1)  + i)th nodal point on the slag-metal interface q( ' ) (x ,  t k )  is 
approximately equal to a constant q{::+ 1) ( m +  l ) + i = q ( 2 ) ( x i ,  t k )  and moved it outside the integral. 
Also we make the same assumption on q(')(x, t k )  and q(')(x, t k ) .  Next we regard qy), 451' and qy) as 
unknowns and move the terms including qy), qy' and qy)  to the left-hand side of the equations. 
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Thus, for the molten metal domain, we obtain a system of linear equations 

where d2) is a vector whose components are uj ,  j =  1, 2, . . . , (nz + 1) (m + 1)  and q'" is a 
vector whose components are #), j=(n,  + 1) (m+ 1 ) +  1, . . . , (nz +2) (m+ 1). K(') is an 
(n, + 1)  (m + 1) x (nz + 1) (m + 1) stiffness matrix whose (i, j )  component is given by 

B") is an (rn + 1) x (rn + 1) diagonal matrix whose (i, i )  component is given by 

dido. 

The line integral is along the slag-metal interface. 4') on the right-hand side of (39) is a vector 
whose ith component is 

dido. (42) 

The line integral is along the outlet. This integral vanishes unless the nodal point i is located on 
the outlet or on the wall adjacent to it. 

Similarly we have the following system of linear equations of the slag domain: 

Here we used 

instead of (34) in view of (15). u(') is a vector whose components are u j , j = ( n z  + 2) (m+ 1 ) +  1, . . . , 
(a2 + n1 + 3) (m + 1)  and q ( O )  is a vector whose components are qy), j = (nz + n,  + 3) (m + 1) + 1, . . . , 
(nz + n ,  +4) (m+ 1). K(') is an (n ,  + 1) (m+ 1) x (n ,  + 1) (m+ 1) stiffness matrix whose (i, j )  
component is given by 

B'') and B(') are (rn + 1 )  x (rn + 1) diagonal matrices whose (i, i) components are given by 
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B!o.)= - 1 4ida (46) 

-2s 4ida. (47) 

slag surface 

respectively. The line integral in (46) is along the slag surface. d') on the right-hand side of (43) is a 
vector whose ith component is 

K I  outlet 

As in the case of dZ), this integral vanishes unless the node i is located on the outlet or on the wall 
adjacent to it. 

DISCRETIZATION O F  THE EQUATIONS FOR THE FREE SURFACES 

Each of the coefficient matrices of the system of equations (39) and (43) is of course singular 
because only natural boundary conditions are specified. In this section we assemble these 
equations together with (20) and (21) to construct a system which has a relevant solution. 

Note that the hydraulic conductivity of the molten metal is much larger than that of the slag, 
i.e. K ,  9 K , .  Therefore, by physical intuition, we see that in the initial stage of the drainage the 
major part of the fluid that drains out is the molten metal and that the slag-metal interface falls 
fast and its right edge comes close to the lower edge of the outlet in a relatively small time interval. 
However, after that, the major part of the fluid that drains out is the slag and the speed of fall of 
the slag-metal interface becomes very slow. In other words, the motion of the slag-metal interface 
has a component with a time constant which is very small relative to the interval of the entire 
process of drainage. Thus the full system of the differential equations (20) and (21) together with 
(39) and (43) is essentially stiff. Therefore it is obvious that we cannot obtain a stable solution if we 
use an explicit scheme for (20) and (21). 

For this reason we employ an implicit scheme for (20) and (21) as follows. We approximate the 
left-hand side of (20) by the finite difference 

(48) 
- _  a f L f ( X i ?  tk ) - f (Xi , tk - l )  
at . At 

On the other hand, we use the value at t=  tk for dul/anlly=,-,,,,) in the right-hand side of (20). This 
results in an implicit scheme and causes the stability of the scheme for a fairly large At. For af/ax 
appearing in the square root in the right-hand side of (20) we use the value at t = tk- in order to 
preserve linearity with respect to the values at t = t , .  Thus we have 

in which we replaced dul/dnl I,,=,-(,, f k )  with qC0) in view of (33). The derivative df(x i ,  tk- l ) / a x  is 
approximated by the finite difference scheme 

In view of (13) we put in the left-hand side of (49) 
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so that we have 

J = ( n z + n l + 3 ) ( m + l ) + l , .  . . , ( n z + n l + 4 ) ( m + 1 )  

on the slag surface. 
Similarly from (21) and (38) we have 

on the slag-metal interface. We also approximate ag(x,, t k -  l)/ax by a finite difference scheme 
similar to (50). We multiply by 1 -yz/yl on both sides of (53) and put 

Yz Yz Y2 

Y1 Y 1  Y 1  
(1 -5) g(xi, t k ) = u l - - - Z = ~ i j , ( X i , g ( x i , t k ) ) - -  ii2(Xi,g(Xi,tk))=Uj+m+1 -- u j - m - l  (54) 

in view of (14). Then we have 

=(l-t)g(xi,tk-l), j = ( n , + 1 )  ( m + 1 ) + 1 , .  . . , ( n 2 + 2 )  (m+1) (55)  

on the slag-metal interface. 
Finally we incorporate (39), ( 5 3 ,  (43) and (52) to obtain a full system of (n2 + n,  +4) (m + 1) 

linear equations as shown in Figure 3. In Figure 3 D(2) and D(O) are (m + 1) x (m + 1)  diagonal 
matrices whose (i, i) components are given by 

and 

respectively. I is the identity matrix. g and f a r e  vectors whose ith components are 

respectively. The hydraulic potential and its derivatives on the free surfaces are obtained 
simultaneously by solving this full system of equations. This resembles very much the situation 
encountered in the boundary element method. 

Also note that the new position of the slag-metal interfacef(xi, tk) and that of the slag-metal 
interface g(xi, tk) are obtained immediately from,the solution using the relations (51) and (54), and 
that, accordingly, we do not use the normal derivatives at all throughout the computation. 
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Figure 3. The matrix equation to be solved 

Although the system of equations shown in Figure 3 is not symmetric, we can symmetrize it by 

(i) Multiply ( y 1 / y 2 )  Jin,erface4jdo by the equation (55) corresponding to the jth nodal point; 
this makes the components in the transposed position of B") equal to B(2) itself in (39). 

(ii) Next multiply (y l /y2)  x ( K , / K , )  by each of the equations in (43); this makes the compo- 
nents in the transposed position of B") equal to B") itself in (43). 

(iii) Finally multiply - ( y 1 / y 2 )  x ( K , / K 2 )  Sslag surface 4,da by the equation (52) corresponding to 
thejth nodal point; this makes the components in the transposed position of B(O) equal to 
B(O) itself in (43). 

Thus we obtain a symmetric system of (n2 + n, +4) (m + 1) equations. Since it is symmetric and 
sparse it can be solved efficiently by the ICCG (incomplete Cholesky decomposition conjugate 
gradient) method.8- l o  

In solving a similar non-steady interface problem to ours, one usually solves the system of 
linear equations obtained, say, by the finite element method at each time step and then updates 
the boundary using some relation independent of the system of linear equations. In other words, 
the potential in the interior domain and the new position of the free boundary are computed 
sequentially. In our method, on the other hand, these two quantities are computed simulta- 
neously as stated above only through the solution of the system of (n2 + n, + 4) (m + 1) equations. 
When we get the new position of the free boundariesf(x, t k )  and g(xi ,  t k ) ,  additional calculation is 
not necessary except (54). Using the updatedf(xi, t k )  and g ( x i ,  t k )  we subdivide the domains Dl(tk) 
and D2(tk) and proceed to the next time step. 

the following procedure: 
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previous g r i d  p o i n t  
\ 

' f i x e d  i n c l i n e d  g r i d  l i n e  

Figure 4. Interpolation of the vertical fall of the free boundary for the inclined side wall geometry 

In short, the present method is characterized by the following two strategies. The first one is 
that we temporarily introduced the natural boundary conditions (33), (34) and (38), and the 
second one is that we employed an implicit approximation to (20) and (21). The incorporation of 
these two strategies enables us to get the solution without handling the normal derivatives 
explicitly so that we can avoid deterioration of the accuracy of computation due to this handling. 

In the present paper we assumed for simplicity that the side wall of the hearth is perpendicular 
to the bottom because the side wall of the bed of the real hearth is approximately perpendicular to 
the bottom. Our scheme, however, may be extended to one which deals with the inclined side wall 
if we replace the fixed vertical grid lines in Figure 2 with fixed inclined grid lines and, at each time 
step, subdivide each inclined grid line segment bounded by, say, the bottom wall and the 
slag-metal interface in order to update the grid points for the finite element triangulation. Since 
we employ the finite element method, it does not matter whether the triangles are right-angled or 
not. The only point to be noted is that when the side wall is inclined, the updated position of the 
free boundary on each fixed inclined grid line is obtained by the interpolation of its vertical fall 
g(xi, t, - 1)  - g(xi, t k )  or f(xi, t k  - ) - f ( x i ,  t k )  as shown in Figure 4. 

A NUMERICAL EXAMPLE AND DISCUSSION 

In this section we show the result of a numerical experiment. The physical parameters we choose 
here are the same as those chosen by Natori and Kawarada6 and Mori and Natori7 which 
simulate a real situation in the blast furnace: 

a =  1, K ,  =7.5, K , =  1875, y 2 / y 1  =4.1875, 
outlet: x = a = l ,  O.O9<ydO11. 

The initial condition is 
f(x, 0) = 0.25, 
g(x, 0) = 0.12 

and the drainage rate is 

In order to apply the finite element method we divide (0, a) on the bottom by 

u0 = 2.25. 

~~=a{l-f=~)"}, i = l ,  2 , .  . . , rn, m=16, 

and choose 
n , = 8  in D,, 
n,=8 in D,. 
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For the time mesh we take 

At=0.16 (65) 

and the computation is terminated when the slag surface reaches the upper edge of the outlet. 
As already mentioned, the system oflinear equations at each time step was solved by the ICCG 

method in which the incomplete Cholesky decomposition LDLT is such that we neglect the 
component of L if the component in the same position of the original matrix is zero. 

The change of the slag surface and the slag-metal interface is shown in Figure 5. This agrees 
quite well with the result obtained by Mori and Natori7 using the boundary element method. 
Unfortunately we cannot compare our result with the actual flow in the blast furnace because, as 
far as we know, there have been no experimental data observed in the blast furnace. The only 
physical simulation is given by Pinczeski et a/." in which glycerol and mercury were used instead 
of slag and molten metal. Their result is qualitatively similar to ours. 

We mentioned that our present scheme is stable for a fairly large At because we use an implicit 
scheme. In fact our scheme was completely stable with Ar =0.32 and gave almost the same 
solution as in the case with At =0.16." We did not find significant differences between the plots of 
the free boundaries with At=0.32 and At =0.16 in Figure 5 except a very small one in the close 
neighbourhood of the outlet. 

As a measure of the accuracy of computation we computed 

where V,  is the decrease per Az of the area of the domain D, + D, due to the fall of the slag surface 
and Vo = At x oo x (radius of the outlet) is the volume of the fluid drained per At from the outlet. 
Although in the initial stage of drainage E is as small as about as 
the slag surface approaches the outlet, and the average value of E is 1.3 x 

it becomes about 5 x 

V 

'i 
t = 4 A t  

t -e i i t  

t=12L!t 

0.0 

0.0 1 .o 

Figure 5. Change of the slag surface (solid curves) and the slag-metal interface (dotted curves) 



FREE SURFACE DRAINAGE PROBLEM 581 

The velocity vectors at t = 4At = 0.64 and t = 8At = 1.28 computed from the hydraulic potential 
are shown in Figures 6 and 7 respectively. Before around t =4At mainly the molten metal drains 
out, but after around this time step the slag becomes the major part of the fluid that drains out 
and the molten metal drains very little. In the present numerical experiment an interesting 
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Figure 6 .  Velocity vectors at t=4At=0.64 
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Figure 7. Velocity vectors at t = 8At = 1.28 
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phenomenon is observed, as reported in the physical simulation by Pinczeski et al.’ mentioned 
above, that the molten metal continues to drain, although very little, even after the average 
slag-metal interface has become substantially lower than the lower edge of the outlet as seen in 
Figure 7. I t  is also observed in our numerical experiment that at the final stage of the drainage the 
slag--metal interface ascended in the very close neighbourhood of the outlet. 

The CPU time necessary for the present computation using the finite element mehod was 
compared with that necessary for the computation using the boundary element method by Natori 
and Kawarada6 and Mori and Natori7 with nearly the same number of nodal points on the 
boundary in the same computer environment. I t  turned out that the CPU time by the finite 
element method was about half of that by the boundary element method. The ICCG method for 
the present sparse symmetric matrix equation plays a significant role in reducing the CPU time. 
The higher efficiency of the finite element method than that of the boundary element method in 
some problems similar to ours has also been reported,13 although the method to solve the system 
of linear equations is not explicitly mentioned there. In addition, in the present computation by 
the finite element method the hydraulic potential in the interior domain is obtained as a 
byproduct, while in the computation by the boundary element method much additional CPU 
time becomes necessary if the potential in the interior domain is required. Therefore we conclude 
that, to solve the present two-phase free boundary problem, the method presented here based on 
the finite element method is superior to the method based on the boundary clement method. 

ACKNOWLEDGEMENTS 

The authors are indebted to the referees for bringing several related papers to their notice. 

REFERENCES 

I .  S. P. Neuman and P. A. Witherspoon, ‘Analysis of nonsteady flow with a free surface using the finite element method’. 

2. 1’. L.-F. Liu, A. H.-D. Cheng and J. A. Liggett, “Boundary integral equation solutions to moving interface between 

3. J. A.  Liggett and P. L.-F. Liu, The Boundary Integral Equation Methodfor  Porous Mediu Flow, George Allen & 

4. J. Crank, Free and Moring Boundary Prohlems, Oxford Science Publications, Clarendon Press, 1984. 
5. M. Natori and H. Kawarada, ‘Numerical solution of free boundary problem for unsteady slag flow in the hearth’, 

Japan. J .  Appl .  Math.,  2, 187-196 (1985). 
6. M. Natori and H. Kawarada, ‘Numerical solution of  the free surface drainage problem of two immiscible fluids by the 

boundary element method’, Japan. J .  App l .  Phys., 24, 1363--1366 (1985). 
7. M. Mori and M. Natori. ‘FEM and BEM applied to a free boundary problem for flows in a blast furnace’, in 

R. Glowinski and J.-L. Lions (eds), Computing Methods in Applied Sciences and Engineering V l l ,  North-Holland, 
1986, 

Warer Resources Res., 7 ,  61 1--610 (1971). 

two fluids in porous media’. Water Resources Res., 17, 144-1452 (1981). 

Unwin, 1983. 

pp. 275-286. 
8. A. Meijerink and H. A. van der Vorst, ‘An iterative solution method for linear equation systems of which the 

9. G. H. Goluh and C. F. Van Loan, Matrix Computations, The Johns Hopkins University Press, 1983. 
coefficient matrix is a symmetric M-matrix’. Math. Compur., 31. 148-162 (1977). 

10. 0. Axelsson and V. A. Barker, Finite Elemenf Solurion of Boundary Z’ulue Problems. Academic Press, 1984. 
1 I .  W. V. Pinczeski, W. B. U. Tanzil, M. 1. Hoschke and J. M. Burgess, ‘Simulation of the drainage of two liquids from a 

12. Zhang Go-feng.  A finite element analysis of a free boundary problem arising in a blast furnace (in Japanese), Master 

13. E. C .  Hume 111, R. A. Brown and W. M. Deen, ‘Comparison of boundary and finite element methods for moving- 

blast furnace hearth’, Tetsu-to-Hagane, 68. SI 1 I (1982). 

Thesis, University of Tsukuba, 1986. 

boundary problems governed by a potenliar, Inf .  j .  numer. methods eng., 21, 1295-1314 (1985). 


